Navigationsweiche Anfang

Navigationsweiche Ende

Sprache wählen

Institute for High-Frequency and Communication Technology

Prof. Dr. rer. nat. Ullrich Pfeiffer


  • Qualitätssicherung mittels mobiler Terahertz-Spektroskopie
    Um die Qualität bereits verpackter Güter erneut zu kontrollieren, steht die Qualitätssicherung in... [mehr]
  • Das Terahertz-Auge: Wuppertaler Forscher*innen entwickeln Prototypen einer Lichtfeldkamera für den Terahertz-Bereich
    Die Grundlagen zur Lichtfeldkamera wurden vom französischen Physiker und Nobelpreisträger Gabriel... [mehr]
  • Wissenschaftlicher Mitarbeiter des IHCT wird mit dem IRMMW-THz Outstanding Student Paper Award ausgezeichnet
    Unser Mitarbeiter Ritesh Jain hat zusammen mit einem anderem Studenten den ersten Platz bei der dies... [mehr]
  • Wuppertaler Lehrstuhl koordiniert ab 2021 neues DFG-Schwerpunktprogramm
    Die Deutsche Forschungsgemeinschaft (DFG) richtet 14 neue Schwerpunktprogramme (SPP) für das Jahr... [mehr]
  • Update COVID-19 / Corona-Virus
    Mit dem Stand 06. April wird für das Sommersemester folgendes festgestellt [mehr]
zum Archiv ->

Europäische Union (EU)

(EU-Vorhaben XXXXX)



Infineon Technologies (D)
ST Microelectronics (F)
IhP GmbH (D)
Technische Universität Dresden (D)
Universität Siegen (D)
Johannes Kepler Universität (A)
Universität der Bundeswehr München (D)
University of Naples (I)
University Paris Sud (F)
ALMA Consulting Group SAS (F)
Bergische Universität Wuppertal (D)



Applications in the emerging high-frequency (h.f.) markets more and more use SiGe components for cost reasons. Current state-of-the-art research and development is taking place primarily in data communication and radar systems at 24, 60, and 77 GHz. For instance, IBM has just demonstrated that its state-of-the-art SiGe HBT technology has the potential to play a major role in high-volume consumer electronic markets by proving the feasibility of 2-Gbps uncompressed HDTV transmission over a 60-GHz SiGe HBT radio link.

The main drawbacks in existing designs, which operate typically at frequencies up to a third of the transit frequency fT, are the necessary high bias currents leading to a power dissipation of several watts per radar chip and a limited achievable noise figure (NF) in each building block. The former disadvantage results in additional cooling effort, which implies costly packaging and mounting procedures. The latter directly influences the overall performance, as the total signal-to-noise ratio (SNR) in homodyne systems is directly limited by the NF of the (active) mixer. Thus, technologies with higher fT can directly lead to improved automotive radar systems with higher performance at lower power consumption, which increases road safety and energy budget. With an increased fT completely new and highly integrated microwave sensor systems are feasible.

However, until recently, this spectral region has resisted attempts to broadly harness its potential for everyday applications. This led to the expression THz gap, loosely describing the lack of adequate technologies to effectively bridge this transition region between microwaves and optics, both readily accessible via well developed electronic and laser-based approaches. THz technology is an emerging field which has demonstrated a wide-ranging potential. Extensive research in the last years has identified many attractive application areas and has paved the technological path towards broadly usable THz systems. THz technology is currently in a pivotal phase and will soon be in a position to radically expand our analytic capabilities via its intrinsic benefits. In this context, DOTFIVE is planned to establish the basis for fully integrated cost efficient electronic THz solutions.



LaufzeitFebruar 2008 - Januar 2011
Drittmittelgeber      Europäische Union (EU)
SchlagworteTerahertz Technologie,