Terahertz-Light Field Camera Prototyp

Light-field cameras record both the brightness and direction of the incident light rays. This spatiodirectional information can be post-processed for a dynamic focal point adjustment and 3-D imaging. Light-field has traditionally been a domain of visible light computational imaging. Our chair is leading the development of light-field methodologies for the THz spectrum, bringing new foundational understanding and hardware capabilities for bridging the terahertz gap.
Currently, we are building the first ever THz light-field camera prototype - which consists of a 3x3 super-array of lens coupled 1k-pixel THz CMOS cameras - in a single package. The CMOS camera chip is presented in the International Solid-State Circuits Conference (ISSCC) 2021. The figure shows the prototype of the light field array. The prototype serves as the hardware platform for the development of light-field based real-time THz 3-D imaging techniques.
Preliminary work:
- 2022
3518.
Howar, Falk; Mues, Malte
GWIT: A Witness Validator for Java based on GraalVM (Competition Contribution)
Page 446–450
Publisher: Springer International Publishing
2022
446–4503517.
IEEE International Conference on Consumer Electronics (ICCE 2022), Online/Las Vegas
Publisher: IEEE
20223516.
Beitz, Bernard; Roth, Robert; Häser, Jutta; Wiegard, Tobias; Möller, Reinhard
Improving the User Experience for Manual Data Labeling using a Graph-based Approach
2022 IEEE International Conference on Consumer Electronics (ICCE), Page 1-4
20223515.
Beitz, Bernard; Roth, Robert; Häser, Jutta; Wiegard, Tobias; Möller, Reinhard
Improving the User Experience for Manual Data Labeling using a Graph-based Approach
2022 IEEE International Conference on Consumer Electronics (ICCE), Page 1-4
20223514.
Ghorban, Farzin; Hasan, Nesreen; Velten, Jörg; Kummert, Anton
Individual Weighting of Unlabeled Data Points via Confidence-Awareness in Semi-Supervised Learning
2022 IEEE International Symposium on Circuits and Systems (ISCAS), Page 1215-1219
20223513.
Vietz, Hannes; Maschler, Benjamin; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis
atp magazin, 63 (9) :86—93
20223512.
Vietz, Hannes; Maschler, Benjamin; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis
atp magazin, 63 (9) :86—93
20223511.
Vietz, Hannes; Maschler, Benjamin; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis
atp magazin, 63 (9) :86—93
20223510.
Vietz, Hannes; Maschler, Benjamin; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis
atp magazin, 63 (9) :86—93
20223509.
Vietz, Hannes; Maschler, Benjamin; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Industrielles Transfer-Lernen: Von der Wissenschaft in die Praxis
atp magazin, 63 (9) :86—93
20223508.
Maschler, Benjamin; Vietz, Hannes; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Insights and Example Use Cases on Industrial Transfer Learning
Procedia CIRP, 107 :511—516
2022
ISSN: 221282713507.
Maschler, Benjamin; Vietz, Hannes; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Insights and Example Use Cases on Industrial Transfer Learning
Procedia CIRP, 107 :511—516
2022
ISSN: 221282713506.
Maschler, Benjamin; Vietz, Hannes; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Insights and Example Use Cases on Industrial Transfer Learning
Procedia CIRP, 107 :511—516
2022
ISSN: 221282713505.
Maschler, Benjamin; Vietz, Hannes; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Insights and Example Use Cases on Industrial Transfer Learning
Procedia CIRP, 107 :511—516
2022
ISSN: 221282713504.
Maschler, Benjamin; Vietz, Hannes; Tercan, Hasan; Bitter, Christian; Meisen, Tobias; Weyrich, Michael
Insights and Example Use Cases on Industrial Transfer Learning
Procedia CIRP, 107 :511—516
2022
ISSN: 221282713503.
Steiniger, Yannik; Stoppe, Jannis; Kraus, Dieter; Meisen, Tobias
Investigating the training of convolutional neural networks with limited sidescan sonar image datasets
OCEANS 2022, Hampton Roads, Page 1—6
Publisher: IEEE
2022ISBN: 978-1-6654-6809-1
3502.
Steiniger, Yannik; Stoppe, Jannis; Kraus, Dieter; Meisen, Tobias
Investigating the training of convolutional neural networks with limited sidescan sonar image datasets
OCEANS 2022, Hampton Roads, Page 1—6
Publisher: IEEE
2022ISBN: 978-1-6654-6809-1
3501.
Steiniger, Yannik; Stoppe, Jannis; Kraus, Dieter; Meisen, Tobias
Investigating the training of convolutional neural networks with limited sidescan sonar image datasets
OCEANS 2022, Hampton Roads, Page 1—6
Publisher: IEEE
2022ISBN: 978-1-6654-6809-1
3500.
Steiniger, Yannik; Stoppe, Jannis; Kraus, Dieter; Meisen, Tobias
Investigating the training of convolutional neural networks with limited sidescan sonar image datasets
OCEANS 2022, Hampton Roads, Page 1—6
Publisher: IEEE
2022ISBN: 978-1-6654-6809-1
3499.
Steiniger, Yannik; Stoppe, Jannis; Kraus, Dieter; Meisen, Tobias
Investigating the training of convolutional neural networks with limited sidescan sonar image datasets
OCEANS 2022, Hampton Roads, Page 1—6
Publisher: IEEE
2022ISBN: 978-1-6654-6809-1
3498.
Bitter, Christian; Thun, Timo; Meisen, Tobias
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
arXiv arXiv:2212.00906
20223497.
Bitter, Christian; Thun, Timo; Meisen, Tobias
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
arXiv arXiv:2212.00906
20223496.
Bitter, Christian; Thun, Timo; Meisen, Tobias
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
arXiv arXiv:2212.00906
20223495.
Bitter, Christian; Thun, Timo; Meisen, Tobias
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
arXiv arXiv:2212.00906
20223494.
Bitter, Christian; Thun, Timo; Meisen, Tobias
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
arXiv arXiv:2212.00906
2022